Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
2.
Cell Rep ; 43(4): 114082, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583155

RESUMO

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates. The regulatory 3' UTR of the vigR mRNA contributes to vancomycin tolerance and upregulates the autolysin IsaA. Using MS2-affinity purification coupled with RNA sequencing, we find that the vigR 3' UTR also regulates dapE, a succinyl-diaminopimelate desuccinylase required for lysine and peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the 3' UTR increased virulence, while the isaA mutant is completely attenuated in a wax moth larvae model. Sequence and structural analyses of vigR indicated that the 3' UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions that contribute sequence for the isaA interaction seed and may functionalize the 3' UTR.

3.
Nat Microbiol ; 9(2): 377-389, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263454

RESUMO

Buruli ulcer, a chronic subcutaneous infection caused by Mycobacterium ulcerans, is increasing in prevalence in southeastern Australia. Possums are a local wildlife reservoir for M. ulcerans and, although mosquitoes have been implicated in transmission, it remains unclear how humans acquire infection. We conducted extensive field survey analyses of M. ulcerans prevalence among mosquitoes in the Mornington Peninsula region of southeastern Australia. PCR screening of trapped mosquitoes revealed a significant association between M. ulcerans and Aedes notoscriptus. Spatial scanning statistics revealed overlap between clusters of M. ulcerans-positive Ae. notoscriptus, M. ulcerans-positive possum excreta and Buruli ulcer cases, and metabarcoding analyses showed individual mosquitoes had fed on humans and possums. Bacterial genomic analysis confirmed shared single-nucleotide-polymorphism profiles for M. ulcerans detected in mosquitoes, possum excreta and humans. These findings indicate Ae. notoscriptus probably transmit M. ulcerans in southeastern Australia and highlight mosquito control as a Buruli ulcer prevention measure.


Assuntos
Aedes , Úlcera de Buruli , Mycobacterium ulcerans , Animais , Humanos , Úlcera de Buruli/epidemiologia , Úlcera de Buruli/genética , Úlcera de Buruli/microbiologia , Mycobacterium ulcerans/genética , Austrália , Genoma Bacteriano , Aedes/genética
4.
Appl Environ Microbiol ; 90(3): e0129223, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289130

RESUMO

Fundamental to effective Legionnaires' disease outbreak control is the ability to rapidly identify the environmental source(s) of the causative agent, Legionella pneumophila. Genomics has revolutionized pathogen surveillance, but L. pneumophila has a complex ecology and population structure that can limit source inference based on standard core genome phylogenetics. Here, we present a powerful machine learning approach that assigns the geographical source of Legionnaires' disease outbreaks more accurately than current core genome comparisons. Models were developed upon 534 L. pneumophila genome sequences, including 149 genomes linked to 20 previously reported Legionnaires' disease outbreaks through detailed case investigations. Our classification models were developed in a cross-validation framework using only environmental L. pneumophila genomes. Assignments of clinical isolate geographic origins demonstrated high predictive sensitivity and specificity of the models, with no false positives or false negatives for 13 out of 20 outbreak groups, despite the presence of within-outbreak polyclonal population structure. Analysis of the same 534-genome panel with a conventional phylogenomic tree and a core genome multi-locus sequence type allelic distance-based classification approach revealed that our machine learning method had the highest overall classification performance-agreement with epidemiological information. Our multivariate statistical learning approach maximizes the use of genomic variation data and is thus well-suited for supporting Legionnaires' disease outbreak investigations.IMPORTANCEIdentifying the sources of Legionnaires' disease outbreaks is crucial for effective control. Current genomic methods, while useful, often fall short due to the complex ecology and population structure of Legionella pneumophila, the causative agent. Our study introduces a high-performing machine learning approach for more accurate geographical source attribution of Legionnaires' disease outbreaks. Developed using cross-validation on environmental L. pneumophila genomes, our models demonstrate excellent predictive sensitivity and specificity. Importantly, this new approach outperforms traditional methods like phylogenomic trees and core genome multi-locus sequence typing, proving more efficient at leveraging genomic variation data to infer outbreak sources. Our machine learning algorithms, harnessing both core and accessory genomic variation, offer significant promise in public health settings. By enabling rapid and precise source identification in Legionnaires' disease outbreaks, such approaches have the potential to expedite intervention efforts and curtail disease transmission.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Legionella pneumophila/genética , Doença dos Legionários/epidemiologia , Tipagem de Sequências Multilocus/métodos , Genômica/métodos , Epidemiologia Molecular/métodos , Surtos de Doenças
5.
Microbiol Spectr ; 12(1): e0283423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018979

RESUMO

IMPORTANCE: This proof-of-concept study introduces a hybrid capture oligo panel for whole-genome sequencing of all six human pathogenic hepatitis A virus (HAV) subgenotypes, exhibiting a higher sensitivity than some conventional genotyping assays. The ability of hybrid capture to enrich multiple targets allows for a single, streamlined workflow, thus facilitating the potential harmonization of molecular surveillance of HAV with other enteric viruses. Even challenging sample matrices can be accommodated, making them suitable for broad implementation in clinical and public health laboratories. This innovative approach has significant implications for enhancing multijurisdictional outbreak investigations as well as our understanding of the global diversity and transmission dynamics of HAV.


Assuntos
Vírus da Hepatite A , Hepatite A , Humanos , Vírus da Hepatite A/genética , Hepatite A/epidemiologia , Sequenciamento Completo do Genoma , Surtos de Doenças , Mapeamento Cromossômico
6.
mBio ; : e0182423, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971247

RESUMO

IMPORTANCE: Interactions between fungi and bacteria are critically important in ecology, medicine, and biotechnology. In this study, we shed light on factors that promote the persistence of a toxin-producing, phytopathogenic Rhizopus-Mycetohabitans symbiosis that causes severe crop losses in Asia. We present an unprecedented case where bacterially produced transcription activator-like (TAL) effectors are key to maintaining a stable endosymbiosis. In their absence, fungal sporulation is abrogated, leading to collapse of the phytopathogenic alliance. The Mycetohabitans TAL (MTAL)-mediated mechanism of host control illustrates a unique role of bacterial effector molecules that has broader implications, potentially serving as a model to understand how prokaryotic symbionts interact with their eukaryotic hosts.

7.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38019123

RESUMO

The COVID-19 pandemic has necessitated the rapid development and implementation of whole-genome sequencing (WGS) and bioinformatic methods for managing the pandemic. However, variability in methods and capabilities between laboratories has posed challenges in ensuring data accuracy. A national working group comprising 18 laboratory scientists and bioinformaticians from Australia and New Zealand was formed to improve data concordance across public health laboratories (PHLs). One effort, presented in this study, sought to understand the impact of the methodology on consensus genome concordance and interpretation. SARS-CoV-2 WGS proficiency testing programme (PTP) data were retrospectively obtained from the 2021 Royal College of Pathologists of Australasia Quality Assurance Programmes (RCPAQAP), which included 11 participating Australian laboratories. The submitted consensus genomes and reads from eight contrived specimens were investigated, focusing on discordant sequence data and findings were presented to the working group to inform best practices. Despite using a variety of laboratory and bioinformatic methods for SARS-CoV-2 WGS, participants largely produced concordant genomes. Two participants returned five discordant sites in a high-Cτ replicate, which could be resolved with reasonable bioinformatic quality thresholds. We noted ten discrepancies in genome assessment that arose from nucleotide heterogeneity at three different sites in three cell-culture-derived control specimens. While these sites were ultimately accurate after considering the participants' bioinformatic parameters, it presented an interesting challenge for developing standards to account for intrahost single nucleotide variation (iSNV). Observed differences had little to no impact on key surveillance metrics, lineage assignment and phylogenetic clustering, while genome coverage <90 % affected both. We recommend PHLs bioinformatically generate two consensus genomes with and without ambiguity thresholds for quality control and downstream analysis, respectively, and adhere to a minimum 90 % genome coverage threshold for inclusion in surveillance interpretations. We also suggest additional PTP assessment criteria, including primer efficiency, detection of iSNVs and minimum genome coverage of 90 %. This study underscores the importance of multidisciplinary national working groups in informing guidelines in real time for bioinformatic quality acceptance criteria. It demonstrates the potential for enhancing public health responses through improved data concordance and quality control in SARS-CoV-2 genomic analysis during pandemic surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Filogenia , Estudos Retrospectivos , COVID-19/epidemiologia , Austrália/epidemiologia , Genômica , Biologia Computacional , Nucleotídeos
8.
Antimicrob Agents Chemother ; 67(11): e0078523, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37823632

RESUMO

Streptococcus pneumoniae is a major human pathogen with a high burden of disease. Non-invasive isolates (those found in non-sterile sites) are thought to be a key source of invasive isolates (those found in sterile sites) and a reservoir of anti-microbial resistance (AMR) determinants. Despite this, pneumococcal surveillance has almost exclusively focused on invasive isolates. We aimed to compare contemporaneous invasive and non-invasive isolate populations to understand how they interact and identify differences in AMR gene distribution. We used a combination of whole-genome sequencing and phenotypic anti-microbial susceptibility testing and a data set of invasive (n = 1,288) and non-invasive (n = 186) pneumococcal isolates, collected in Victoria, Australia, between 2018 and 2022. The non-invasive population had increased levels of antibiotic resistance to multiple classes of antibiotics including beta-lactam antibiotics penicillin and ceftriaxone. We identified genomic intersections between the invasive and non-invasive populations and no distinct phylogenetic clustering of the two populations. However, this analysis revealed sub-populations overrepresented in each population. The sub-populations that had high levels of AMR were overrepresented in the non-invasive population. We determined that WamR-Pneumo was the most accurate in silico tool for predicting resistance to the antibiotics tested. This tool was then used to assess the allelic diversity of the penicillin-binding protein genes, which acquire mutations leading to beta-lactam antibiotic resistance, and found that they were highly conserved (≥80% shared) between the two populations. These findings show the potential of non-invasive isolates to serve as reservoirs of AMR determinants.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/epidemiologia , Filogenia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
9.
mBio ; : e0226223, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37850732

RESUMO

Among the 16 two-component systems in the opportunistic human pathogen Staphylococcus aureus, only WalKR is essential. Like the orthologous systems in other Bacillota, S. aureus WalKR controls autolysins involved in peptidoglycan remodeling and is therefore intimately involved in cell division. However, despite the importance of WalKR in S. aureus, the basis for its essentiality is not understood and the regulon is poorly defined. Here, we defined a consensus WalR DNA-binding motif and the direct WalKR regulon by using functional genomics, including chromatin immunoprecipitation sequencing, with a panel of isogenic walKR mutants that had a spectrum of altered activities. Consistent with prior findings, the direct regulon includes multiple autolysin genes. However, this work also revealed that WalR directly regulates at least five essential genes involved in lipoteichoic acid synthesis (ltaS): translation (rplK), DNA compaction (hup), initiation of DNA replication (dnaA, hup) and purine nucleotide metabolism (prs). Thus, WalKR in S. aureus serves as a polyfunctional regulator that contributes to fundamental control over critical cell processes by coordinately linking cell wall homeostasis with purine biosynthesis, protein biosynthesis, and DNA replication. Our findings further address the essentiality of this locus and highlight the importance of WalKR as a bona fide target for novel anti-staphylococcal therapeutics. IMPORTANCE The opportunistic human pathogen Staphylococcus aureus uses an array of protein sensing systems called two-component systems (TCS) to sense environmental signals and adapt its physiology in response by regulating different genes. This sensory network is key to S. aureus versatility and success as a pathogen. Here, we reveal for the first time the full extent of the regulatory network of WalKR, the only staphylococcal TCS that is indispensable for survival under laboratory conditions. We found that WalKR is a master regulator of cell growth, coordinating the expression of genes from multiple, fundamental S. aureus cellular processes, including those involved in maintaining cell wall metabolism, protein biosynthesis, nucleotide metabolism, and the initiation of DNA replication.

10.
mBio ; 14(5): e0134923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796131

RESUMO

IMPORTANCE: Therapies that target and aid the host immune defense to repel cancer cells or invading pathogens are rapidly emerging. Antibiotic resistance is among the largest threats to human health globally. Staphylococcus aureus (S. aureus) is the most common bacterial infection, and it poses a challenge to the healthcare system due to its significant ability to develop resistance toward current available therapies. In long-term infections, S. aureus further adapt to avoid clearance by the host immune defense. In this study, we discover a new interaction that allows S. aureus to avoid elimination by the immune system, which likely supports its persistence in the host. Moreover, we find that blocking the specific receptor (PD-1) using antibodies significantly relieves the S. aureus-imposed inhibition. Our findings suggest that therapeutically targeting PD-1 is a possible future strategy for treating certain antibiotic-resistant staphylococcal infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Receptor de Morte Celular Programada 1 , Linfócitos T , Infecções Estafilocócicas/microbiologia
11.
PLoS Negl Trop Dis ; 17(10): e0011272, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37824578

RESUMO

INTRODUCTION: Mycobacterium ulcerans (MU) causes Buruli ulcer (Buruli), a geographically restricted infection that can result in skin loss, contracture and permanent scarring. Lesion-location maps compiled from more than 640 cases in south eastern Australia suggest biting insects are likely involved in transmission, but it is unclear whether MU is brought by insects to humans or if MU is already on the skin and inoculation is an opportunistic event that need not be insect dependent. METHODS: We validated a PCR swab detection assay and defined its dynamic range using laboratory cultured M. ulcerans and fresh pigskin. We invited volunteers in Buruli-endemic and non-endemic areas to sample their skin surfaces with self-collected skin swabs tested by IS2404 quantitative PCR. RESULTS: Pigskin validation experiments established a limit-of-detection of 0.06 CFU/cm2 at a qPCR cycle threshold (Ct) of 35. Fifty-seven volunteers returned their self-collected kits of 4 swabs (bilateral ankles, calves, wrists, forearms), 10 from control areas and 47 from endemic areas. Collection was timed to coincide with the known peak-transmission period of Buruli. All swabs from human volunteers tested negative (Ct ≥35). CONCLUSIONS: M. ulcerans was not detected on the skin of humans from highly Buruli endemic areas.


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Humanos , Animais , Bovinos , Úlcera de Buruli/diagnóstico , Úlcera de Buruli/epidemiologia , Úlcera de Buruli/microbiologia , Mycobacterium ulcerans/genética , DNA Bacteriano , Reação em Cadeia da Polimerase , Insetos , Austrália/epidemiologia
12.
Cell Rep ; 42(9): 113069, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37703880

RESUMO

Outcomes of severe bacterial infections are determined by the interplay between host, pathogen, and treatments. While human genomics has provided insights into host factors impacting Staphylococcus aureus infections, comparatively little is known about S. aureus genotypes and disease severity. Building on the hypothesis that bacterial pathoadaptation is a key outcome driver, we developed a genome-wide association study (GWAS) framework to identify adaptive mutations associated with treatment failure and mortality in S. aureus bacteremia (1,358 episodes). Our research highlights the potential of vancomycin-selected mutations and vancomycin minimum inhibitory concentration (MIC) as key explanatory variables to predict infection severity. The contribution of bacterial variation was much lower for clinical outcomes (heritability <5%); however, GWASs allowed us to identify additional, MIC-independent candidate pathogenesis loci. Using supervised machine learning, we were able to quantify the predictive potential of these adaptive signatures. Our statistical genomics framework provides a powerful means to capture adaptive mutations impacting severe bacterial infections.


Assuntos
Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Estudo de Associação Genômica Ampla , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Bacteriemia/tratamento farmacológico , Bacteriemia/genética , Bacteriemia/microbiologia , Testes de Sensibilidade Microbiana , Resultado do Tratamento
13.
Angew Chem Int Ed Engl ; 62(42): e202308540, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37650335

RESUMO

Rhizonin A and B are hepatotoxic cyclopeptides produced by bacterial endosymbionts (Mycetohabitans endofungorum) of the fungus Rhizopus microsporus. Their toxicity critically depends on the presence of 3-furylalanine (Fua) residues, which also occur in pharmaceutically relevant cyclopeptides of the endolide and bingchamide families. The biosynthesis and incorporation of Fua by non-ribosomal peptide synthetases (NRPS), however, has remained elusive. By genome sequencing and gene inactivation we elucidated the gene cluster responsible for rhizonin biosynthesis. A suite of isotope labeling experiments identified tyrosine and l-DOPA as Fua precursors and provided the first mechanistic insight. Bioinformatics, mutational analysis and heterologous reconstitution identified dioxygenase RhzB as necessary and sufficient for Fua formation. RhzB is a novel type of heme-dependent aromatic oxygenases (HDAO) that enabled the discovery of the bingchamide biosynthesis gene cluster through genome mining.


Assuntos
Biologia Computacional , Peptídeos Cíclicos , Humanos , Peptídeos Cíclicos/química , Família Multigênica , Fungos/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo
14.
ACS Chem Biol ; 18(8): 1872-1879, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37498707

RESUMO

Nocardia are opportunistic human pathogens that can cause a range of debilitating and difficult to treat infections of the lungs, brain, skin, and soft tissues. Despite their close relationship to the well-known secondary metabolite-producing genus, Streptomyces, comparatively few natural products are known from the Nocardia, and even less is known about their involvement in the pathogenesis. Here, we combine chemistry, genomics, and molecular microbiology to reveal the production of terpenomycin, a new cytotoxic and antifungal polyene from a human pathogenic Nocardia terpenica isolate. We unveil the polyketide synthase (PKS) responsible for terpenomycin biosynthesis and show that it combines several unusual features, including "split", skipped, and iteratively used modules, and the use of the unusual extender unit methoxymalonate as a starter unit. To link genes to molecules, we constructed a transposon mutant library in N. terpenica, identifying a terpenomycin-null mutant with an inactivated terpenomycin PKS. Our findings show that the neglected actinomycetes have an unappreciated capacity for the production of bioactive molecules with unique biosynthetic pathways waiting to be uncovered and highlights these organisms as producers of diverse natural products.


Assuntos
Antineoplásicos , Produtos Biológicos , Nocardia , Humanos , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Antifúngicos , Polienos/farmacologia , Nocardia/genética , Nocardia/metabolismo , Produtos Biológicos/farmacologia , Família Multigênica
15.
Microb Genom ; 9(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37471116

RESUMO

Streptococcus pneumoniae is a major human pathogen and can cause a range of conditions from asymptomatic colonization to invasive pneumococcal disease (IPD). The epidemiology and distribution of IPD-causing serotypes in Australia has undergone large changes following the introduction of the 7-valent pneumococcal conjugate vaccine (PCV) in 2005 and the 13-valent PCV in 2011. In this study, to provide a contemporary understanding of the IPD causing population in Victoria, Australia, we aimed to examine the population structure and prevalence of antimicrobial resistance using whole-genome sequencing and comprehensive antimicrobial susceptibility data of 1288 isolates collected between 2018 and 2022. We observed high diversity among the isolates with 52 serotypes, 203 sequence types (STs) and 70 Global Pneumococcal Sequencing Project Clusters (GPSCs) identified. Serotypes contained in the 13v-PCV represented 35.3 % (n=405) of isolates. Antimicrobial resistance (AMR) to at least one antibiotic was identified in 23.8 % (n=358) of isolates with penicillin resistance the most prevalent (20.3 %, n=261 using meningitis breakpoints and 5.1 % n=65 using oral breakpoints). Of the AMR isolates, 28 % (n=101) were multidrug resistant (MDR) (resistant to three or more drug classes). Vaccination status of cases was determined for a subset of isolates with 34 cases classified as vaccine failure events (fully vaccinated IPD cases of vaccine serotype). However, no phylogenetic association with failure events was observed. Within the highly diverse IPD population, we identified six high-risk sub-populations of public health concern characterized by high prevalence, high rates of AMR and MDR, or serotype inclusion in vaccines. High-risk serotypes included serotypes 3, 19F, 19A, 14, 11A, 15A and serofamily 23. In addition, we present our data validating seroBA for in silico serotyping to facilitate ISO-accreditation of this test in routine use in a public health reference laboratory and have made this data set available. This study provides insights into the population dynamics, highlights non-vaccine serotypes of concern that are highly resistant, and provides a genomic framework for the ongoing surveillance of IPD in Australia which can inform next-generation IPD prevention strategies.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Sorogrupo , Vitória/epidemiologia , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia
16.
PLoS Negl Trop Dis ; 17(6): e0011394, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37384606

RESUMO

Critical knowledge gaps regarding infection with Mycobacterium ulcerans, the cause of Buruli ulcer (BU), have impeded development of new therapeutic approaches and vaccines for prevention of this neglected tropical disease. Here, we review the current understanding of host-pathogen interactions and correlates of immune protection to explore the case for establishing a controlled human infection model of M. ulcerans infection. We also summarise the overarching safety considerations and present a rationale for selecting a suitable challenge strain.


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Humanos , Úlcera de Buruli/prevenção & controle , Interações Hospedeiro-Patógeno , Conhecimento , Doenças Negligenciadas
17.
Elife ; 122023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37289634

RESUMO

Staphylococcus aureus infections are associated with high mortality rates. Often considered an extracellular pathogen, S. aureus can persist and replicate within host cells, evading immune responses, and causing host cell death. Classical methods for assessing S. aureus cytotoxicity are limited by testing culture supernatants and endpoint measurements that do not capture the phenotypic diversity of intracellular bacteria. Using a well-established epithelial cell line model, we have developed a platform called InToxSa (intracellular toxicity of S. aureus) to quantify intracellular cytotoxic S. aureus phenotypes. Studying a panel of 387 S. aureus bacteraemia isolates, and combined with comparative, statistical, and functional genomics, our platform identified mutations in S. aureus clinical isolates that reduced bacterial cytotoxicity and promoted intracellular persistence. In addition to numerous convergent mutations in the Agr quorum sensing system, our approach detected mutations in other loci that also impacted cytotoxicity and intracellular persistence. We discovered that clinical mutations in ausA, encoding the aureusimine non-ribosomal peptide synthetase, reduced S. aureus cytotoxicity, and increased intracellular persistence. InToxSa is a versatile, high-throughput cell-based phenomics platform and we showcase its utility by identifying clinically relevant S. aureus pathoadaptive mutations that promote intracellular residency.


Assuntos
Bacteriemia , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Infecções Estafilocócicas/microbiologia , Bacteriemia/microbiologia , Mutação , Linhagem Celular , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
18.
Antimicrob Agents Chemother ; 67(6): e0032823, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37184389

RESUMO

Daptomycin is a last-resort antibiotic used for the treatment of infections caused by Gram-positive antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). Treatment failure is commonly linked to accumulation of point mutations; however, the contribution of single mutations to resistance and the mechanisms underlying resistance remain incompletely understood. Here, we show that a single nucleotide polymorphism (SNP) selected during daptomycin therapy inactivates the highly conserved ClpP protease and is causing reduced susceptibility of MRSA to daptomycin, vancomycin, and ß-lactam antibiotics as well as decreased expression of virulence factors. Super-resolution microscopy demonstrated that inactivation of ClpP reduced binding of daptomycin to the septal site and diminished membrane damage. In both the parental strain and the clpP strain, daptomycin inhibited the inward progression of septum synthesis, eventually leading to lysis and death of the parental strain while surviving clpP cells were able to continue synthesis of the peripheral cell wall in the presence of 10× MIC daptomycin, resulting in a rod-shaped morphology. To our knowledge, this is the first demonstration that synthesis of the outer cell wall continues in the presence of daptomycin. Collectively, our data provide novel insight into the mechanisms behind bacterial killing and resistance to this important antibiotic. Also, the study emphasizes that treatment with last-line antibiotics is selective for mutations that, like the SNP in clpP, favor antibiotic resistance over virulence gene expression.


Assuntos
Daptomicina , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Daptomicina/farmacologia , Staphylococcus aureus/genética , Vancomicina/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
19.
Elife ; 122023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37057888

RESUMO

Background: Buruli ulcer (BU) is a neglected tropical disease caused by infection of subcutaneous tissue with Mycobacterium ulcerans. BU is commonly reported across rural regions of Central and West Africa but has been increasing dramatically in temperate southeast Australia around the major metropolitan city of Melbourne, with most disease transmission occurring in the summer months. Previous research has shown that Australian native possums are reservoirs of M. ulcerans and that they shed the bacteria in their fecal material (excreta). Field surveys show that locales where possums harbor M. ulcerans overlap with human cases of BU, raising the possibility of using possum excreta surveys to predict the risk of disease occurrence in humans. Methods: We thus established a highly structured 12 month possum excreta surveillance program across an area of 350 km2 in the Mornington Peninsula area 70 km south of Melbourne, Australia. The primary objective of our study was to assess using statistical modeling if M. ulcerans surveillance of possum excreta provided useful information for predicting future human BU case locations. Results: Over two sampling campaigns in summer and winter, we collected 2,282 possum excreta specimens of which 11% were PCR positive for M. ulcerans-specific DNA. Using the spatial scanning statistical tool SaTScan, we observed non-random, co-correlated clustering of both M. ulcerans positive possum excreta and human BU cases. We next trained a statistical model with the Mornington Peninsula excreta survey data to predict the future likelihood of human BU cases occurring in the region. By observing where human BU cases subsequently occurred, we show that the excreta model performance was superior to a null model trained using the previous year's human BU case incidence data (AUC 0.66 vs 0.55). We then used data unseen by the excreta-informed model from a new survey of 661 possum excreta specimens in Geelong, a geographically separate BU endemic area to the southwest of Melbourne, to prospectively predict the location of human BU cases in that region. As for the Mornington Peninsula, the excreta-based BU prediction model outperformed the null model (AUC 0.75 vs 0.50) and pinpointed specific locations in Geelong where interventions could be deployed to interrupt disease spread. Conclusions: This study highlights the One Health nature of BU by confirming a quantitative relationship between possum excreta shedding of M. ulcerans and humans developing BU. The excreta survey-informed modeling we have described will be a powerful tool for the efficient targeting of public health responses to stop BU. Funding: This research was supported by the National Health and Medical Research Council of Australia and the Victorian Government Department of Health (GNT1152807 and GNT1196396).


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Humanos , Austrália/epidemiologia , Derrame de Bactérias , Zoonoses Bacterianas/microbiologia , Zoonoses Bacterianas/transmissão , Úlcera de Buruli/epidemiologia , Úlcera de Buruli/microbiologia , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/estatística & dados numéricos , Fezes/microbiologia , Modelos Estatísticos , Mycobacterium ulcerans/genética , Mycobacterium ulcerans/isolamento & purificação , Phalangeridae/microbiologia
20.
Microb Genom ; 9(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961484

RESUMO

In early 2020, the Medical Biology Laboratory of the Pasteur Institute of Cambodia isolated an unusually high number of fluoroquinolone-resistant Salmonella enterica subspecies enterica serovar Paratyphi A strains during its routine bacteriological surveillance activities in Phnom Penh, Cambodia. A public-health investigation was supported by genome sequencing of these Paratyphi A strains to gain insights into the genetic diversity and population structure of a potential outbreak of fluoroquinolone-resistant paratyphoid fever. Comparative genomic and phylodynamic analyses revealed the 2020 strains were descended from a previously described 2013-2015 outbreak of Paratyphi A infections. Our analysis showed sub-lineage 2.3.1 had remained largely susceptible to fluoroquinolone drugs until 2015, but acquired chromosomal resistance to these drugs during six separate events between late 2012 and 2015. The emergence of fluoroquinolone resistance was rapidly followed by the replacement of the original susceptible Paratyphi A population, which led to a dramatic increase of fluoroquinolone-resistant blood-culture-confirmed cases in subsequent years (2016-2020). The rapid acquisition of resistance-conferring mutations in the Paratyphi A population over a 3 year period is suggestive of a strong selective pressure on that population, likely linked with fluoroquinolone use. In turn, emergence of fluoroquinolone resistance has led to increased use of extended-spectrum cephalosporins like ceftriaxone that are becoming the drug of choice for empirical treatment of paratyphoid fever in Cambodia.


Assuntos
Febre Paratifoide , Salmonella paratyphi A , Humanos , Salmonella paratyphi A/genética , Febre Paratifoide/epidemiologia , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sorogrupo , Camboja/epidemiologia , Filogenia , Farmacorresistência Bacteriana/genética , Surtos de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...